FITC anti-mouse CD206 (MMR) Antibody

Pricing & Availability
C068C2 (See other available formats)
Regulatory Status
Other Names
MMR (macrophage mannose receptor), MR (mannose receptor), MRC1
Rat IgG2a, κ
Ave. Rating
Submit a Review
Product Citations
Thioglycollate-elicited Balb/c macrophages were fixed/pemeabilized, and then stained with CD107b (Mac-3) APC and CD206 (clone C068C2) FITC (top) or rat IgG2a, κ FITC isotype control (bottom).
  • C068C2_FITC_1_072111
    Thioglycollate-elicited Balb/c macrophages were fixed/pemeabilized, and then stained with CD107b (Mac-3) APC and CD206 (clone C068C2) FITC (top) or rat IgG2a, κ FITC isotype control (bottom).
  • C068C2_FITC_2_072111
Compare all formats See FITC spectral data
Cat # Size Price Quantity Check Availability Save
141703 50 µg 109€
Check Availability

Need larger quantities of this item?
Request Bulk Quote
141704 200 µg 259€
Check Availability

Need larger quantities of this item?
Request Bulk Quote

CD206, also known as mannose receptor (MR), is a 175 kD type I membrane protein. It is a pattern recognition receptor (PRR) belonging to the C-type lectin superfamily. MR is expressed on macrophages, dendritic cells, Langerhans cells, and hepatic or lymphatic endothelial cells. MR recognizes a range of microbial carbohydrates bearing mannose, fucose, or N-acetyl glucosamine through its C-type lectin-like carbohydrate recognition domains, sulfated carbohydrate antigens through its cysteine-rich domain, and collagens through its fibronectin type II domain. MR mediates endocytosis and phagocytosis as well as activation of macrophages and antigen presentation. It plays an important role in host defense and provides a link between innate and adaptive immunity. Recently, MR on lymphatic endothelial cells was found to be involved in leukocyte trafficking and a contributor to the metastatic behavior of cancer cells. It suggests that MR may be a potential target in controlling inflammation and cancer metastasis by targeting the lymphatic vasculature.

Product Details
Technical Data Sheet (pdf)

Product Details

Verified Reactivity
Antibody Type
Host Species
Recombinant mouse CD206 (MMR)
Phosphate-buffered solution, pH 7.2, containing 0.09% sodium azide.
The antibody was purified by affinity chromatography, and conjugated with FITC under optimal conditions.
0.5 mg/ml
Storage & Handling
The antibody solution should be stored undiluted between 2°C and 8°C, and protected from prolonged exposure to light. Do not freeze.

ICFC - Quality tested
FC - Verified

Recommended Usage

Each lot of this antibody is quality control tested by intracellular immunofluorescent staining with flow cytometric analysis. For flow cytometric staining, the suggested use of this reagent is ≤0.125 µg per million cells in 100 µl volume. It is recommended that the reagent be titrated for optimal performance for each application.

Excitation Laser
Blue Laser (488 nm)
Application Notes

Clone C068C2 recognizes a region similar to clone MR5D3, based on the ability of the clones to block each other. Additional reported applications (for the relevant formats) include: spatial biology (IBEX)4,5.

Application References
  1. Keller J, et al. 2012. Biochem Biophys Res Commun. 417:217. PubMed
  2. Ito H, et al. 2012. J Am Soc Nephrol. 23:1797. PubMed
  3. Yang X, et al. 2015. PNAS. 112:2900. PubMed
  4. Radtke AJ, et al. 2020. Proc Natl Acad Sci U S A. 117:33455-65. (SB) PubMed
  5. Radtke AJ, et al. 2022. Nat Protoc. 17:378-401. (SB) PubMed
Product Citations
  1. Oliver AJ, et al. 2020. Oncoimmunology. 9:1802979. PubMed
  2. Sun L, et al. 2021. Cancer Cell. 39:1361. PubMed
  3. Liang S, et al. 2019. Mol Med Rep. 19:3707. PubMed
  4. Valanparambil RM, et al. 2017. PLoS Pathog. 13:e1006647. PubMed
  5. Meng W, et al. 2021. JCI Insight. 6:. PubMed
  6. Keane T, et al. 2012. Biomaterials. 33:1771. PubMed
  7. Miao L, et al. 2020. Theranostics. 0.7625. PubMed
  8. Kesavan R, et al. 2021. Int J Mol Sci. 22:. PubMed
  9. Zakeri A, et al. 2021. J Extracell Vesicles. 10:e12131. PubMed
  10. Choi B, et al. 2017. Eur J Pharmacol. 10.1016/j.ejphar.2017.07.022. PubMed
  11. Song C, et al. 2019. Nat Commun. 10:3745. PubMed
  12. Li C, et al. 2022. Theranostics. 12:4581. PubMed
  13. Ma C, et al. 2022. Proc Natl Acad Sci U S A. 119:. PubMed
  14. Zhang W, et al. 2021. Front Immunol. 12:688294. PubMed
  15. Wada I, et al. 2021. Invest Ophthalmol Vis Sci. 62:17. PubMed
  16. Eastman A, et al. 2016. J Immunol . 194: 5999-6010. PubMed
  17. Lee S, et al. 2015. PLoS One. 10: 0132329. PubMed
  18. Hindi S, et al. 2012. Mol Cell Biol. 32:4833. PubMed
  19. Wu R, et al. 2019. J Cell Mol Med. 24:1684. PubMed
  20. Song M, et al. 2021. J Immunol Res. 6696606:2021. PubMed
  21. Uroda T, et al. 2020. Nat Protoc. 15:2107. PubMed
  22. Li H, et al. 2019. J Immunol Res. 2018:4807145. PubMed
  23. Li K, et al. 2022. J Immunother Cancer. 10:. PubMed
  24. Yang Y, et al. 2022. Regen Biomater. 9:rbac023. PubMed
  25. Forni MF, et al. 2021. Front Oncol. 11:667715. PubMed
  26. Ma J, et al. 2021. Curr Protoc. 1:e144. PubMed
  27. Shin JE, et al. 2021. Heliyon. 7:e08433. PubMed
  28. Amo-Aparicio J, et al. 2021. Theranostics. 11:9805. PubMed
  29. Li Z, et al. 2022. J Exp Clin Cancer Res. 41:74. PubMed
  30. Guo L, et al. 2021. Front Immunol. 12:785457. PubMed
  31. Nguyen TKT, et al. 2020. Am J Pathol. 286:190. PubMed
  32. Yin S, et al. 2016. Nat Commun. 7: 11311. PubMed
  33. Yin T, et al. 2016. Sci Rep. 18:19534. PubMed
  34. Linde N, et al. 2018. Nat Commun. 9:21. PubMed
  35. Shi R, et al. 2022. Theranostics. 12:875. PubMed
  36. Lee SS, et al. 2022. Commun Biol. 5:654. PubMed
  37. Vigeland C, et al. 2016. PLoS One. 11: 0163288. PubMed
  38. Lu CS, et al. 2020. J Hematol Oncol. 0.584722222. PubMed
  39. Li N, et al. 2021. eLife. 10:00. PubMed
  40. Neupane AS, et al. 2020. Cell. 183(1):110-125.e11. PubMed
  41. Zhang F, et al. 2017. Mol Immunol. 10.1016/j.molimm.2017.06.019. PubMed
  42. Lin S, et al. 2022. Nat Commun. 13:3301. PubMed
  43. Sun L, et al. 2015. J Immunol. 194:4891. PubMed
  44. Kida Y, et al. 2013. J Am Soc Nephrol. 24:559. PubMed
  45. Wang W, et al. 2018. Oncogenesis. 7:97. PubMed
  46. Xie Z, et al. 2018. J Am Heart Assoc. 7:e007442. PubMed
  47. Ishii H, et al. 2012. Cell Death Dis. 9;3:e363. PubMed
  48. Wang T, et al. 2018. Front Physiol. 9:209. PubMed
  49. Lu J, et al. 2021. Cell Death Discov. 7:165. PubMed
  50. Tomay F, et al. 2019. J Transl Med. 17:237. PubMed
  51. Zhou T, et al. 2022. Sci Adv. 8:eabj9617. PubMed
  52. Guan X, et al. 2022. Nat Commun. 13:2834. PubMed
  53. Yang Y, et al. 2020. Cancer Biol Ther. 522:21. PubMed
  54. Galle-Treger L, et al. 2019. Nat Commun. 10:713. PubMed
  55. Genoula M, et al. 2018. Front Immunol. 9:459. PubMed
  56. Zimmerman KA, et al. 2019. J Am Soc Nephrol. 30:1841. PubMed
  57. Miki Y, et al. 2022. JCI Insight. 7:. PubMed
  58. Zhang S, et al. 2022. Nat Commun. 13:4744. PubMed
  59. Shibata T, et al. 2020. J Clin Invest. 130:3021. PubMed
  60. Li Y, et al. 2015. Sci Rep. 5: 18648. PubMed
  61. Ano Y, et al. 2019. Nutrients. 1.959027778. PubMed
  62. Makino A, et al. 2021. iScience. 24:103201. PubMed
  63. Wang S, et al. 2022. J Inflamm Res. 14:7107. PubMed
  64. Liu Y, et al. 2015. BioMed Res Int. 2015 563425. PubMed
  65. Shen L, et al. 2016. Sci Rep. 6:30347. PubMed
  66. Cuccarese M, et al. 2017. Nat Commun. 8:14293. PubMed
  67. Yuan Y, et al. 2020. Front Physiol. 0.967361111. PubMed
  68. Laban H, et al. 2018. J Cell Biol. 217:1503. PubMed
  69. Wang X, et al. 2021. Cell. 184:5357. PubMed
  70. de Assis LVM, et al. 2022. Commun Biol. 5:461. PubMed
  71. Kaji T, et al. 2012. J Exp Med. 80:3642. PubMed
  72. Grayczyk JP et al. 2017. Cell host & microbe. 22(5):678-687 . PubMed
  73. Wang D, et al. 2021. Nan Fang Yi Ke Da Xue Xue Bao. 41:775. PubMed
  74. Zhang A, et al. 2021. Theranostics. 11:3839. PubMed
  75. Madsen CS, et al. 2022. Commun Biol. 5:888. PubMed
  76. Wang S, et al. 2020. J Cell Mol Med. 24:722. PubMed
  77. Yoshida H, et al. 2019. Cell. 176:897. PubMed
  78. McAusland TM, et al. 2021. Mol Ther Oncolytics. 20:306. PubMed
  79. Medina-Buelvas DM, et al. 2021. Pathogens. 10:. PubMed
  80. Gao R, et al. 2021. J Clin Invest. 131:. PubMed
  81. Chen Y, et al. 2021. Cancer Cell. 39(4):548-565.e6. PubMed
  82. Xue YL, et al. 2020. J Cell Mol Med. 24:12341. PubMed
  83. Zhang J, et al. 2014. J Immunol. 193:5149. PubMed
  84. Fransén Pettersson N, et al. 2018. PLoS One. 13:e0203228. PubMed
  85. Hartwig T et al. 2017. Molecular cell. 65(4):730-742 . PubMed
  86. Gu L, et al. 2017. FASEB J. 31:3072. PubMed
  87. Perrotta C, et al. 2018. Front Immunol. 9:1186. PubMed
  88. Chen Z, et al. 2016. Innate Immunity. 22: 419 - 432. PubMed
  89. Hall JA, et al. 2020. Cell Metabolism. 32(4):665-675.e6. PubMed
  90. Wu L, et al. 2020. Cancer Immunol Res. 710:8. PubMed
  91. Kim YD, et al. 2020. J Cancer. 11:4059. PubMed
  92. Scheyltjens I, et al. 2022. Nat Protoc. 17:2354. PubMed
  93. Xue Y, et al. 2020. Sci Rep. 10:22265. PubMed
  94. Kapralov AA, et al. 2020. Nat Chem Biol. 278:16. PubMed
  95. Li J, et al. 2021. eLife. 10:00. PubMed
  96. Xiang W, et al. 2020. Signal Transduct Target Ther. 0.374305556. PubMed
  97. Yao Y, et al. 2016. Mol Ther. 10.1038/mt.2016.36. PubMed
  98. Kim SH, et al. 2020. Neoplasia. 1.3375. PubMed
  99. Yuan C, et al. 2020. Braz J Med Biol Res. 53:e9488. PubMed
AB_10900988 (BioLegend Cat. No. 141703)
AB_10901166 (BioLegend Cat. No. 141704)

Antigen Details

Type I transmembrane protein, 175 kD, C-type lectin superfamily

Macrophages, dendritic cells, Langerhans cells, liver endothelial cells

Pathogen recognition, endocytosis and phagocytosis, antigen presentation
Antigen containing mannose, fucose, or an N-acetyl glucosamine
Cell Type
Dendritic cells, Endothelial cells, Langerhans cells, Macrophages
Biology Area
Cell Biology, Immunology, Innate Immunity, Signal Transduction
Molecular Family
CD Molecules
Antigen References

1. Wileman TE, et al. 1986. P. Natl. Acad. Sci. USA 83:2501.
2. Apostolopoulos V, et al. 2001. Curr. Mol. Med. 1:469.
3. Burgdorf S, et al. 2006. J. Immunol. 176:6770.
4. McKenzie EJ, et al. 2007. J. Immunol. 178:4975.

Gene ID
17533 View all products for this Gene ID
View information about CD206 on

Related FAQs

Why is mouse CD206 stained intracellularly and not via surface staining?

Typically, mouse CD206 surface level is relatively low under normal conditions and so intracellular staining protocol is required to get better signal.

Go To Top Version: 4    Revision Date: 04/04/2016

For Research Use Only. Not for diagnostic or therapeutic use.


This product is supplied subject to the terms and conditions, including the limited license, located at ("Terms") and may be used only as provided in the Terms. Without limiting the foregoing, BioLegend products may not be used for any Commercial Purpose as defined in the Terms, resold in any form, used in manufacturing, or reverse engineered, sequenced, or otherwise studied or used to learn its design or composition without express written approval of BioLegend. Regardless of the information given in this document, user is solely responsible for determining any license requirements necessary for user’s intended use and assumes all risk and liability arising from use of the product. BioLegend is not responsible for patent infringement or any other risks or liabilities whatsoever resulting from the use of its products.


BioLegend, the BioLegend logo, and all other trademarks are property of BioLegend, Inc. or their respective owners, and all rights are reserved.


8999 BioLegend Way, San Diego, CA 92121
Toll-Free Phone: 1-877-Bio-Legend (246-5343) Phone: (858) 768-5800 Fax: (877) 455-9587

This data display is provided for general comparisons between formats.
Your actual data may vary due to variations in samples, target cells, instruments and their settings, staining conditions, and other factors.
If you need assistance with selecting the best format contact our expert technical support team.


Login / Register
Remember me
Forgot your password? Reset password?
Create an Account