Anti-N-Terminal Aβ Mab 3A1 Preferentially Recognizes Aβ Aggregates and Does Not Cross-React with APP

Jeffrey L. Frost¹, James S. Foster², Peggy Taylor³, Brian O’Nuallain¹
¹BioLegend, San Diego, CA 92121, and ²University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA

Introduction

Aβ’s N-terminus is highly immunogenic and antibodies that target this region are standard reagents for Alzheimer’s disease (AD) research, and have been utilized as investigational AD therapeutics. A murine anti-N-terminal Aβ monoclonal antibody (mAb), 3A1, was generated against dityrosine cross-linked Aβ1-40 protein species (CAPS), and its epitope mapped to the Aβ’s first 15 amino acids. 3A1 has demonstrated activity in vivo by decreasing plaque burden and increasing the levels of plasma Aβ in an APPsw/PS1ΔE9 transgenic mouse model of AD [Frost et al. (2015) Neurobiol Aging 36(12):3187]. To better understand the mAb’s specificity for Aβ we established in vitro the antibody’s ability to recognize Aβ1-40 conformers (monomers, dimers, protofibrils), APP, and rodent Aβ.

Methods

3A1’s avidity for Aβ conformers, APP and rodent Aβ were determined using ELISA, and Western blot assays. Anti-N-terminal Aβ mAb, 6E10 [Kim et al. (1998) Neurosci Res Comm 7:113], was used as a positive control. Aβ conformers were generated as previously described [Wedel et al. (2012) Plos One 7(11):e50317].

Mab 3A1 Recognized Human Aβ1-40 and Did Not Bind to Rodent Aβ or to Human APP

Both anti-N-terminal Aβ mAbs, 3A1 and 6E10, bound to plate-immobilized human Aβ1-40 with EC50 of ~2 nM. The mAbs had low to no binding to rodent Aβ.

Mab 3A1 Did not bind to plate-immobilized human recombinant APP751 protein. Mab 6E10 bound similarly to Aβ1-40 and APP751 with EC50 of ~0.2 nM.

Summary & Conclusions

MAB 3A1 is a novel anti-N-terminal Aβ antibody that specifically detected human Aβ conformers in ELISA, IP/WB, and IHC applications.

The antibody demonstrated up to ~700-fold preference for aggregated compared with monomeric Aβ in Capture/Sandwich ELISA. In contrast, another anti-N-terminal Aβ antibody, 6E10, did not preferably capture Aβ aggregates.

3A1’s utility as an antibody research tool for AD was further demonstrated by its ability to avidly bind to human Aβ conformers without appreciably cross-reacting with human APP or rodent Aβ.

Acknowledgement

We would like to thank the University of Tennessee Graduate School of Medicine for their contributions to this poster.