Purified anti-Neurofilament H (NF-H), Nonphosphorylated Antibody (Previously Covance catalog# SMI-32P)

Pricing & Availability
Clone
SMI 32 (See other available formats)
Other Names
Neurofilament heavy polypeptide, NF-H, 200 kD neurofilament protein, neurofilament triplet H protein
Previously
Covance Catalog# SMI-32P
Isotype
Mouse IgG1
Ave. Rating
Submit a Review
Product Citations
publications
1_SMI-32_PURE_NF-H_Antibody_IHC-P_011218
IHC staining of purified anti-Neurofilament H (NF-H), Nonphosphorylated antibody (clone SMI 32) on formalin-fixed paraffin-embedded mouse brain tissue. Following antigen retrieval using Retrieval-ALL Antigen Unmasking System 3 (Cat. No. 927601), the tissue was incubated with 1 µg/ml of the primary antibody overnight at 4°C. BioLegend’s Ultra Streptavidin (USA) HRP Detection Kit (Multi-Species, DAB, Cat. No. 929901) was used for detection followed by hematoxylin counterstaining, according to the protocol provided. The image was captured with a 40X objective. Scale bar: 50µm
  • 1_SMI-32_PURE_NF-H_Antibody_IHC-P_011218
    IHC staining of purified anti-Neurofilament H (NF-H), Nonphosphorylated antibody (clone SMI 32) on formalin-fixed paraffin-embedded mouse brain tissue. Following antigen retrieval using Retrieval-ALL Antigen Unmasking System 3 (Cat. No. 927601), the tissue was incubated with 1 µg/ml of the primary antibody overnight at 4°C. BioLegend’s Ultra Streptavidin (USA) HRP Detection Kit (Multi-Species, DAB, Cat. No. 929901) was used for detection followed by hematoxylin counterstaining, according to the protocol provided. The image was captured with a 40X objective. Scale bar: 50µm
  • SMI-32_PURE_NeurofilamentH_Antibody_HR_2_090517
    Immunofluorescence staining of anti-Neurofilament H (NF-H), Nonphosphorylated antibody (clone SMI 32) on formalin-fixed paraffin-embedded (FFPE) tissue section from mouse Thalamus. After antigen retrieval using Retrieval-ALL Antigen Unmasking System 3 (Cat. No. 927601), the tissue was blocked with Normal Serum Block for 30 min at room temperature, and then incubated with SMI 32 at 5 µg/mL overnight at 4°C, followed by incubation with Alexa Fluor® 488 Goat anti-mouse IgG (Cat. No. 405319) for one hour at room temperature. The image was captured with a 40X objective (Scale Bar: 20 µm).
  • SMI-32_PURE_NeurofilamentH_Antibody_HR_3_090517
    IHC-Fluorescence staining of Formalin Fixed Paraffin Embedded (FFPE) Rat Cerebellum by anti-Neurofilament H (NF-H), Nonphosphorylated Antibody clone SMI 32. After antigen retrieval using Retrieval-ALL Antigen Unmasking System 3 (Cat. No. 927601), the tissue was blocked with Normal Serum Block for 30 min at room temperature, and then incubated with SMI 32 at 5 µg/mL overnight at 4°C, followed by incubation with Alexa Fluor® 488 Goat anti-mouse IgG (Cat. No. 405319) for one hour at room temperature. The image was captured with a 40X objective (Scale Bar: 20 µm).
  • SMI-32_PURE_NF-H_Antibody_WB_011218
    Western blot of purified anti-Neurofilament H (NF-H), Nonphosphorylated antibody (clone SMI 32). Lane 1: Molecular weight marker; Lane 2: 20 µg of human brain lysate; Lane 3: 20 µg of mouse brain lysate; Lane 4: 20 µg of rat brain lysate. The blot was incubated with 1 ug/mL of the primary antibody overnight at 4°C, followed by incubation with HRP-labeled goat anti-mouse IgG (Cat. No. 405306). Enhanced chemiluminescence was used as the detection system.
Cat # Size Price Quantity Avail. Save
801702 25 µL 76€
Check Availability


Need larger quantities of this item?
Request Bulk Quote
801701 100 µL 188€
Check Availability


Need larger quantities of this item?
Request Bulk Quote
Description

Neurofilaments (NF) are approximately 10 nanometer intermediate filaments found in neurons. They are a major component of the neuronal cytoskeleton, and function primarily to provide structural support for the axon and to regulate the axon diameter. There are three major NF subunits, and the names given to these subunits are based upon the apparent molecular mass of the mammalian subunits on SDS-PAGE. The light or lowest NF (NF-L) runs at 68-70 kD. The medium or middle NF (NF-M) runs at about 145-160 kD, and the heavy or highest NF (NF-H) runs at 200-220 kD. However, the actual molecular weight of these proteins is considerably lower due to the highly charged C-terminal regions of the molecules. The level of NF gene expression correlates with the axonal diameter, which controls how fast electrical signals travel down the axon. Mutant mice with NF abnormalities have phenotypes resembling amyotrophic lateral sclerosis. NF immunostaining is common in diagnostic neuropathology. It is useful for differentiating neurons (positive for NF) from the glia (negative for NF).

Product Details
Technical Data Sheet (pdf)

Product Details

Reactivity
Human, Mouse, Rat
Antibody Type
Monoclonal
Host Species
Mouse
Formulation
Phosphate-buffered solution (no preservatives or carrier proteins).
Preparation
The antibody was purified by affinity chromatography.
Concentration
1 mg/ml
Storage & Handling
The antibody solution should be stored undiluted between 2°C and 8°C. Please note the storage condition for this antibody has been changed from -20°C to between 2°C and 8°C. You can also check your vial or your CoA to find the most accurate storage condition for this antibody.
Application

IHC-P - Quality tested
WB - Verified
Array Tomography, ICC - Reported in the literature, not verified in house

Recommended Usage

Each lot of this antibody is quality control tested by formalin-fixed paraffin-embedded immunohistochemical staining. For immunohistochemistry, a concentration range of 1.0 - 5.0 µg/ml is suggested. For Western blotting, the suggested use of this reagent is 1.0 - 5.0 µg per ml. It is recommended that the reagent be titrated for optimal performance for each application.

Application Notes

Additional reported applications (for the relevant formats) include Western blotting6, immunohistochemistry4,5, immunocytochemistry1,2,3, 7, array tomography8.

Cross-reactivity to monkey tissue has been Reported in the literature, not verified in house4.

This antibody reacts with a nonphosphorylated epitope in neurofilament H of most mammalian species. The reaction is masked when the epitope is phosphorylated. The staining of isolated neurofilament preparations is greatly intensified upon dephosphorylation. Immunocytochemically, SMI 32 visualizes neuronal cell bodies, dendrites, and some thick axons in the central and peripheral nervous systems. However, thin axons are not revealed. Other cells and tissues are unreactive. The antibody distinguishes three subdivisions of the macaque precentral motor cortex. The greater size of the left versus the right superior temporal lobe was found to be due to increased axonal myelination and not due to increased number of glial cells or SMI 32-enumerated neurons, suggesting that the specialization for language in the left temporal lobe is related to increased speed of signal transmission. In cultures of murine cortex, SMI 32 labels a neuronal population with enhanced vulnerability to kainate toxicity most of which are GABAergic and reveal kainate-activated Ca2+ uptake.

Application References

(PubMed link indicates BioLegend citation)
  1. Chang Q, Martin LJ. 2011. J. Neurosci., 31:2815-27. (ICC) PubMed
  2. Stevens HE, et al. 2010. J. Neurosci. 30:5590-602. (ICC) PubMed
  3. Kiryu-Seo S, et al. 2010. J. Neurosci. 30:6658-66. (ICC) PubMed  
  4. Redondo J, et al. 2015. Brain Pathol. 25(6):692. (IHC-P) PubMed  
  5. Feng L, et al. 2017. eNeuro. 4(1): 0331-16.2016. (IHC-P) PubMed
  6. Feng L, et al. 2014. Invest Ophthalmol Vis Sci. 54(2): 1106–1117. (IHC-P) PubMed
  7. Theotokis, et al. 2016. J. Neuroinflammation 13(1):265 (IHC-P)
  8. Bennett, et al. 2015. J. Neurosci. Methods 245:25-36 (Array Tomography)
  9. Petzold A, et al. 2011. Brain 134:464. (WB) PubMed  
Product Citations
  1. Corsini S, et al. 2017. Cell Death Dis. 10.1038/cddis.2017.232. PubMed
  2. Krieger B, et al. 2017. PLoS One. 12:e0180091. PubMed
  3. Ito K, et al. 2018. Sci Rep. 33:1052. PubMed
  4. Kelley KW et al. 2018. Neuron. 98(2):306-319 . PubMed
  5. De Pace R, et al. 2018. PLoS Genet. 8:6458. PubMed
  6. Maruyama T, et al. 2018. Cell Death Dis. 12:146. PubMed
  7. Cignarella F et al. 2018. Cell metabolism. 27(6):1222-1235 . PubMed
  8. Yi‐Lan Weng et al. 2018. Neuron. 97(2):313-325 . PubMed
  9. Saraf MP et al. 2018. The Journal of comparative neurology. 527(3):625-639 . PubMed
  10. Larson VA et al. 2018. eLife. 7 pii: e34829. PubMed
  11. Alpár A, et al. 2018. EMBO J. 37:. PubMed
  12. Wong R, et al. 2019. Brain Behav Immun. 76:126. PubMed
  13. Cuadrado E et al. 2019. Cell reports. 26(7):1718-1726 . PubMed
  14. Zhou Y, et al. 2019. J Clin Invest. 130:1756. PubMed
  15. Dyer M, et al. 2019. Front Aging Neurosci. 11:68. PubMed
  16. Jiang LL, et al. 2019. J Clin Invest. 130. PubMed
  17. Zhang Q, et al. 2019. PLoS Biol. 17:e3000330. PubMed
  18. Kinoshita H, et al. 2019. Sci Rep. 9:11519. PubMed
  19. Roboon J, et al. 2019. Front Cell Neurosci. 13:258. PubMed
  20. Hirono M, et al. 2018. J Neurosci. 38:6130. PubMed
  21. Korzhevskii DE, et al. 2017. Zh Nevrol Psikhiatr Im S S Korsakova. 117:50. PubMed
  22. Drohomyrecky PC, et al. 2019. J Immunol. 203:2588. PubMed
  23. Iida M, et al. 2019. Nat Commun. 10:4262. PubMed
  24. Tung YT et al. 2019. Cell Stem Cell. 25(2):193-209 . PubMed
  25. McLeod VM et al. 2019. Br J Pharmacol. 176(13):2111-2130 . PubMed
  26. Saraf MP et al. 2019. The Journal of comparative neurology. 527(15):2599-2611 . PubMed
  27. Litvina EY et al. 2017. Neuron. 96(2):330-338 . PubMed
  28. Wood KC et al. 2017. PloS one. 12(1):e0170264 . PubMed
  29. Griggs WS et al. 2017. Frontiers in neuroanatomy. 0.531944444 . PubMed
  30. Abernathy DG et al. 2017. Cell stem cell. 21(3):332-348 . PubMed
  31. Penndorf D et al. 2017. PloS one. 12(8):e0183684 . PubMed
  32. Takakura K, et al. 2017. Heliyon. 3:e00462. PubMed
  33. Reinehr S, et al. 2019. Int J Mol Sci. 2.613194444. PubMed
  34. Schirmer L, et al. 2019. Nature. 573:75. PubMed
  35. Laug D, et al. 2019. J Clin Invest. 129:4408. PubMed
  36. Tan H, et al. 2019. Cell Death Differ. 27:1369. PubMed
  37. Yang C, et al. 2020. Neuron. 105:276. PubMed
  38. Zhang LY, et al. 2020. Theranostics. 0.468055556. PubMed
  39. Abo-Rady M, et al. 2020. Stem Cell Reports. 14:390. PubMed
  40. Reinhard K, et al. 2020. eLife. 8:e50697.. PubMed
  41. Cocozza G, et al. 2018. Brain Behav Immun. 73:584. PubMed
  42. Sen T, et al. 2020. J Neurosci. 40:424. PubMed
  43. Turner M, et al. 2015. J Neuroimmunol. 285: 4-12. PubMed
  44. Pagliarini V, et al. 2015. J Cell Biol. 211: 77 - 90. PubMed
  45. Wang H, et al. 2015. Sci Rep. 5: 17383. PubMed
  46. Berry R, et al. 2015. PLoS One. 10: 0144341. PubMed
  47. Stevens H, et al. 2010. J Neurosci. 30:5590-5602. PubMed
  48. Martin Q 2011. J Neurosci. 31:2815-2827. PubMed
  49. Petzold A, et al. 2011. Brain. 134:464-483. PubMed
  50. Kiryu-Seo S, et al. 2010. J Neurosci. 30:6658-6666. PubMed
  51. Redondo J, et al. 2015. Brain Pathol. 25:692-700. PubMed
  52. Parisi C, et al. 2016. Cell Death Differ. 23:531-541. PubMed
  53. MacNair L, et al. 2016. Brain. 139: 86 - 100. PubMed
  54. Donkels C, et al. 2016. Cereb Cortex. 10.1093/cercor/bhv346. PubMed
  55. örner S, et al. 2016. J Neuropathol Exp Neurol. 10.1093/jnen/nlw003. PubMed
  56. Li S, et al. 2016. Proc Natl Acad Sci U S A. 113: 1937 - 1942. PubMed
  57. Ebert T 2016. Hum Mol Genet. 25: 514 - 523. PubMed
  58. Wagener R, et al. 2016. Cereb Cortex. 26: 820 - 837. PubMed
  59. Saba L, et al. 2016. Cereb Cortex. 26: 1512-1528. PubMed
  60. Yoo M, Kim T 2016. Sci Rep. 6:28548. PubMed
  61. Brambilla L, et al. 2016. Hum Mol Genet. 10.1093/hmg/ddw161. PubMed
  62. Ho R, et al. 2016. Nat Neurosci. 10.1038/nn.4345. PubMed
  63. Azeez I, et al. 2016. J Neuropathol Exp Neurol. 75: 843 - 854. PubMed
  64. Rizzo F, et al. 2016. Hum Mol Genet. 10.1093/hmg/ddw258. PubMed
  65. Ou Y, et al. 2016. J Neurosci. 36: 9240 - 9252. PubMed
  66. Luna G, et al. 2016. Exp Eye Res. 150: 4-21. PubMed
  67. Casanovas A, et al. 2017. Sci Rep. 7:40155. PubMed
  68. Feng L, et al. 2017. eNeuro. 4(1). PubMed
  69. Bukreeva I, et al. 2017. Sci Rep. 7:41054. PubMed
  70. Li X, et al. 2017. Mol Ther. 25(1):140-152. PubMed
  71. Petrozziello T, et al. 2017. Cell Death Differ. 10.1038/cdd.2016.154. PubMed
  72. Lanz T, et al. 2017. Sci Rep. 7:41271. PubMed
  73. Himmelein S, et al. 2017. J Virol. 10.1128/JVI.00331-17. PubMed
  74. Lv Q, et al. 2021. Cereb Cortex. 31:341. PubMed
  75. Puller C, et al. 2020. J Neurosci. 40:1302. PubMed
  76. Sepehrimanesh M, et al. 2020. American Journal of Physiology-Cell Physiology. 319(4):C771-C780. PubMed
  77. Mikhalkin A, et al. 2020. Journal of Comparative Neurology. 529(7):1430-1441. PubMed
  78. Rosenkranz SC, et al. 2021. eLife. 10:00. PubMed
  79. Brodie-Kommit J, et al. 2021. Science Advances. 7(11):. PubMed
  80. Calvo-Barreiro L, et al. 2021. Neurotherapeutics. . PubMed
  81. Roboon J, et al. 2021. Journal of Neurochemistry. . PubMed
  82. Ho R, et al. 2020. Cell Systems. 12(2):159-175.e9. PubMed
  83. Hughes RO, et al. 2021. Cell Reports. 34(1):108588. PubMed
  84. Wang F, et al. 2021. Current Biology. 31(11):2263-2273.e3. PubMed
  85. Shi L, et al. 2021. Immunity. . PubMed
RRID
AB_2715852 (BioLegend Cat. No. 801702)
AB_2564642 (BioLegend Cat. No. 801701)

Antigen Details

Structure
Neurofilament H has an apparent molecular mass of 200-220 kD.
Distribution

Tissue distribution: CNS, peripheral nerves and glandular cells of the prostate
Cellular distribution: Cytoskeleton, nucleus, cytosol, and mitochondrion

Function
NF-H Neurofilaments are the major components of the neuronal cytoskeleton. They provide axonal support and regulate axon diameter. Phosphorylation of NF-H results in the formation of interfilament cross bridges that are important in the maintenance of axonal caliber.
Receptors
Phosphorylation seems to play a major role in the functioning of the larger neurofilament polypeptides (NF-M and NF-H), the levels of phosphorylation result in changes to the neurofilament function.
Cell Type
Mature Neurons
Biology Area
Cell Biology, Neuroscience, Neuroscience Cell Markers
Molecular Family
Intermediate Filaments, Phospho-Proteins
Antigen References
  1. Turner M, et al. 2015. Journal of Neuroimmunology. 285: 4. PubMed
  2. Pagliarini V, et al. 2015. J. Cell Biol.. 211: 77. PubMed
  3. Petzold A, et al. 2011. Brain 134. (WB) PubMed 
  4. Yuan A, et al. 2016. Brain Res Bull  126(3): 334.
  5. Parlakian A, et al. 2016. Rev Neurol. 172(10): 607.
  6. Li D, et al. 2016. Front Aging Neurosci. 8: 290.
  7. Costa J, et al. 2016. Clin Chim Acta. 455: 7.
  8. Lad SP, et al. 2010.  J Stroke Cerebrovasc Dis. 21(1): 30.
Gene ID
4744 View all products for this Gene ID
UniProt
View information about Neurofilament H NF-H on UniProt.org

Related FAQs

There are no FAQs for this product.
Go To Top Version: 2    Revision Date: 05.19.2015

For research use only. Not for diagnostic use. Not for resale. BioLegend will not be held responsible for patent infringement or other violations that may occur with the use of our products.

 

*These products may be covered by one or more Limited Use Label Licenses (see the BioLegend Catalog or our website, www.biolegend.com/ordering#license). BioLegend products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products, reverse engineer functionally similar materials, or to provide a service to third parties without written approval of BioLegend. By use of these products you accept the terms and conditions of all applicable Limited Use Label Licenses. Unless otherwise indicated, these products are for research use only and are not intended for human or animal diagnostic, therapeutic or commercial use.

 

BioLegend Inc., 8999 BioLegend Way, San Diego, CA 92121 www.biolegend.com
Toll-Free Phone: 1-877-Bio-Legend (246-5343) Phone: (858) 768-5800 Fax: (877) 455-9587

This data display is provided for general comparisons between formats.
Your actual data may vary due to variations in samples, target cells, instruments and their settings, staining conditions, and other factors.
If you need assistance with selecting the best format contact our expert technical support team.

ProductsHere
Insert Note Here
Save Close Clear
Lab Timer
Tools
Login / Register
Remember me
Forgot your password? Reset password?
Create an Account